A regularity criterion for the Keller-Segel-Euler system
نویسندگان
چکیده
Here u,π ,n and p denote the fluid velocity field, scalar pressure, cell concentration, and oxygen concentration, respectively. The functions f (p) and r(p) are two given smooth functions of p denoting the oxygen consumption rate and chemotactic sensitivity, respectively. The function φ denotes the potential function. When φ = , system (.) and (.) reduces to the well-known Euler system, Ferrari [] showed the regularity criterion
منابع مشابه
A note on Monge-Ampère Keller-Segel equation
This note studies the Monge–Ampère Keller–Segel equation in a periodic domain Td(d ≥ 2), a fully nonlinear modification of the Keller–Segel equation where the Monge–Ampère equation det(I + ∇2v) = u + 1 substitutes for the usual Poisson equation ∆v = u. The existence of global weak solutions is obtained for this modified equation. Moreover, we prove the regularity in L∞ 0, T ;L∞ ∩W 1,1+γ(Td) ...
متن کاملA Note on the Subcritical Two Dimensional Keller-Segel System
The existence of solution for the 2D-Keller-Segel system in the subcritical case, i.e. when the initial mass is less than 8π , is reproved. Instead of using the entropy in the free energy and free energy dissipation, which was used in the proofs (Blanchet et al. in SIAM J. Numer. Anal. 46:691–721, 2008; Electron. J. Differ. Equ. Conf. 44:32, 2006 (electronic)), the potential energy term is full...
متن کاملJeans type instability for a chemotactic model of cellular aggregation
We consider an inertial model of chemotactic aggregation generalizing the Keller-Segel model and we study the linear dynamical stability of an infinite and homogeneous distribution of cells (bacteria, amoebae, endothelial cells,...) when inertial effects are accounted for. These inertial terms model cells directional persistance. We determine the condition of instability and the growth rate of ...
متن کاملConvergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model
Abstract. Variational steepest descent approximation schemes for the modified Patlak-KellerSegel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recov...
متن کاملFully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model
This paper formulates and analyzes fully discrete schemes for the two-dimensional Keller-Segel chemotaxis model. The spatial discretization of the model is based on the discontinuous Galerkin methods and the temporal discretization is based either on Forward Euler or the second order explicit total variation diminishing (TVD) Runge-Kutta methods. We consider Cartesian grids and prove optimal fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017